Noncommutative Tori, Real Multiplication and Line Bundles
نویسندگان
چکیده
This thesis explores an approach to Hilbert's twelfth problem for real quadratic number elds, concerning the determination of an explicit class eld theory for such elds. The basis for our approach is a paper by Manin proposing a theory of Real Multiplication realising such an explicit theory, analogous to the theory of Complex Multiplication associated to imaginary quadratic elds. Whereas elliptic curves play the leading role in the latter theory, objects known as Noncommutative Tori are the subject of Manin's dream. In this thesis we study a family of topological spaces known as Quantum Tori that arise naturally from Manin's approach. Our aim throughout this thesis is to show that these non-Hausdor spaces have an algebraic character , which is unexpected through their de nition, though entirely consistent with their envisioned role in Real Multiplication. Chapter 1 is a general introduction to the problem, providing a historical and technical background to the motivation behind this thesis. Chapter 2 deals with the problem of de ning continuous maps between Quantum Tori using ideas from Nonstandard Analysis, culminating in a description of the action of a Galois group on certain isomorphism classes of these spaces. Chapter 3 concerns the problem of de ning a nontrivial notion of line bundles over Quantum Tori, while Chapter 4 concerns the existence of sections of these line bundles. We show that such sections have applications to the null values of the derivatives of L-functions attached to real quadratic elds, which in the context of Stark's conjectures is seen to be relevant to Hilbert's problem.
منابع مشابه
Noncommutative Two-tori with Real Multiplication as Noncommutative Projective Varieties
We define analogues of homogeneous coordinate algebras for noncommutative two-tori with real multiplication. We prove that the categories of standard holomorphic vector bundles on such noncommutative tori can be described in terms of graded modules over appropriate homogeneous coordinate algebras. We give a criterion for such an algebra to be Koszul and prove that the Koszul dual algebra also c...
متن کاملNoncommutative Geometry and Arithmetic
This is an overview of recent results aimed at developing a geometry of noncommutative tori with real multiplication, with the purpose of providing a parallel, for real quadratic fields, of the classical theory of elliptic curves with complex multiplication for imaginary quadratic fields. This talk concentrates on two main aspects: the relation of Stark numbers to the geometry of noncommutative...
متن کاملCategories of holomorphic line bundles on higher dimensional noncommutative complex tori
We construct explicitly noncommutative deformations of categories of holomorphic line bundles over higher dimensional tori. Our basic tools are Heisenberg modules over noncommutative tori and complex/holomorphic structures on them introduced by A. Schwarz. We obtain differential graded (DG) categories as full subcategories of curved DG categories of Heisenberg modules over the complex noncommut...
متن کاملTitle: Solvmanifolds and Noncommutative Tori with Real Multiplication
We prove that the Shimizu L-function of a real quadratic field is obtained from a (Lorentzian) spectral triple on a noncommutative torus with real multiplication, as an adiabatic limit of the Dirac operator on a 3-dimensional solvmanifold. The Dirac operator on this 3dimensional geometry gives, via the Connes-Landi isospectral deformations, a spectral triple for the noncommutative tori obtained...
متن کاملSolvmanifolds and noncommutative tori with real multiplication
We prove that the Shimizu L-function of a real quadratic field is obtained from a (Lorentzian) spectral triple on a noncommutative torus with real multiplication, as an adiabatic limit of the Dirac operator on a 3-dimensional solvmanifold. The Dirac operator on this 3-dimensional geometry gives, via the Connes–Landi isospectral deformations, a spectral triple for the noncommutative tori obtaine...
متن کامل